Adaptive Optics

Wave-front sensor strategies for SPHERE: first on-sky results and future improvements

SPHERE instrument [1] (Spectro-Polarimetry High-contrast Exoplanet Research) is a second generation ESO instrument dedicated to high contrast imaging, and exoplanet direct detection and characterisation. The overall performance of XAO system of SPHERE, as well as the optimal control law for turbulence correction, are presented in dedicated papers [5,6]. The global performance of the (...)

Read more

SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system

The SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument is an ESO project aiming at the direct detection of extra-solar planets. SPHERE has been successfully integrated and tested in Europe end 2013 and has been re-integrated at Paranal in Chile early 2014 for a first light at the beginning of May. The heart of the SPHERE instrument is its eXtreme Adaptive Optics (XAO) (...)

Read more

SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system

The SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument is an ESO project aiming at the direct detection of extra-solar planets. SPHERE has been successfully integrated and tested in Europe end 2013 and has been re-integrated at Paranal in Chile early 2014 for a first light at the beginning of May. The heart of the SPHERE instrument is its eXtreme Adaptive Optics (XAO) (...)

Read more

Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results

The extreme AO system, SAXO (SPHERE AO for eXoplanet Observation), is the heart of the SPHERE system, feeding the scientific instruments with flat wave front corrected from all the atmospheric turbulence and internal defects. We will present the final performance of SAXO obtained during the instrument AIT in Europe as well as the very first on-sky results. The main requirements and system (...)

Read more